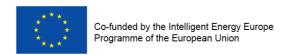


D3.4_PHPP Result Sheets

CS13

Næstved


INTELLIGENT ENERGY – EUROPE II

Energy efficiency and renewable energy in buildings IEE/12/070

EuroPHit

[Improving the energy performance of step-by-step refurbishment and integration of renewable energies]

Contract N°: SI2.645928

Technical References

Project Acronym	EuroPHit
Project Title	Improving the energy performance of step-by-step refurbishment and integration of renewable energies
Project Coordinator	Jan Steiger Passive House Institute, Dr. Wolfgang Feist Rheinstrasse 44/46 D 64283 Darmstadt jan.steiger@passiv.de
Project Duration	1 April 2013 – 31 March 2016 (36 Months)

Deliverable No.	D3.4
Dissemination Level	PU
Work Package	WP3_Practical Implementation
Lead beneficiary	04_MosArt
Contributing beneficiary(ies)	13_PHDK
Author(s)	Søren Pedersen
Co-author(s)	
Date	31 10 2014
File Name	EuroPHit_D3.4_20141031_PHDK_CS13_PHPP_ResultSheet

The sole responsibility for the content of this [webpage, publication etc.] lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained therein.

Table of Contents

Abstract	4
1 Existing building: PHPP Result Sheet	5
1.1 PHPP Result sheet of the existing building	5
2 Retrofit steps	6
2.1 Overall refurbishment Plan	6
2.1.1 Retrofit steps:	6
2.1.2 Efficiency Improvements	7
3 Completion of step-by-step refurbishment	ç
3.1 PHPP Result Sheet of the completed refurbishment (2014)	ç
List of tables and figures	
Figure 1: Floor plans [Ole Kjærulffs Tegnestue, 2013]	4
Figure 2: North and East façades [Ole Kjærulffs Tegnestue, 2013]	4
Figure 3: Specific energy efficiency values of the existing building modelled with PHPP 9 Beta	5
Figure 4: Overview refurbishment steps	6
Figure 5: Overview energy efficiency improvement according to the overall refurbishment plan	7
Figure 6: Effect of the in 2014 actually implemented steps compared to start end end state	8
Figure 7: Specific energy efficiency values of the completed project modelled with PHPP 9 Beta	ç

Abstract

This document provides a short overview of the efficiency improvement of a step-by-step refurbishment to EnerPHit standard to be undertaken for the project CS13, rehab workshop in Næstved.

First, the result sheet of the project's current status will present the calculated energy consumption of the existing building.

The PHPP result sheet of the completed EnerPHit retrofit will present the energy demand estimated for the completion of the project according to the overall refurbishment plan

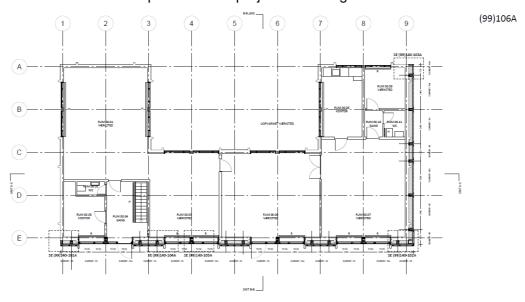


Figure 1: Floor plans [Ole Kjærulffs Tegnestue, 2013]

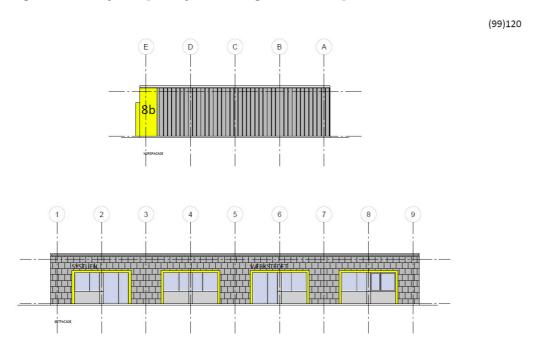
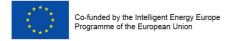



Figure 2: North and East façades [Ole Kjærulffs Tegnestue, 2013]

1 Existing building: PHPP Result Sheet

1.1 PHPP Result sheet of the existing building

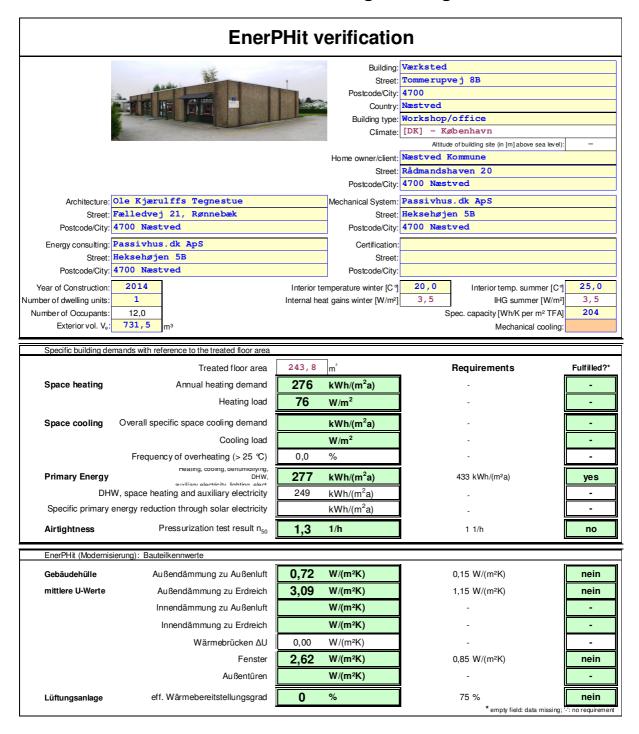
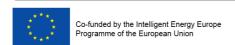



Figure 3: Specific energy efficiency values of the existing building modelled with PHPP 9 Beta

2 Retrofit steps

2.1 Overall refurbishment Plan

2.1.1 Retrofit steps:

In order to settle the draught and minimize heat consumption, we recommended the following solution:

- 1. Establish balanced ventilation with heat recovery.
- 2. Exchange the original, leaky windows with highly energy efficient windows with low U-value
- 3. Mend the remaining, small, leakages
- 4. Insulate the basement walls (at that stage we had not realized that they already hat 50 mm mineral wool, which might have changed the conclusion)
- 5. Insulate the facades externally
- 6. Insulate the crawl space floor
- 7. Insulate the roof (tar roofing felt) in 2026-2036, when its service life ends

Steps 1-3 are necessary in order to deal with the immediate complaints about draught, but the building owner also intends with time to insulate the facades. In order to integrate the new windows with the façade insulation in a simple way, the building owner decided to include also the façade insulation (step 5) now. This conditions the insulation of the basement walls first (step 4), as it can hardly be performed later.

The roofing felt is from 2006. It is expected to have a service life span of 20 years, thus the insulation of the roof is postponed.

			Heating	Specific Primary Energy	Additional Specific
Step No.	Year	Measures	Demand	Demand	PV Gains
	1975		276	277	
1	>2014	Install MVHR	224	242	
2		Exchange windows	194	221	
3		Improve air tightness to 0,6/h	190	218	
4		Insulate basement walls	170	204	
5		Insulate facades	92	148	
6		Insulate crawl space floor	78	139	
7	2026	Insulate roof	76	137	

Figure 4: Overview refurbishment steps

2.1.2 Efficiency Improvements

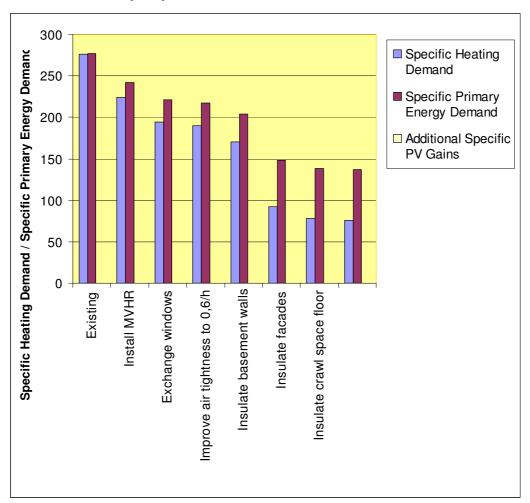


Figure 5: Overview energy efficiency improvement according to the overall refurbishment plan

Budget cuts

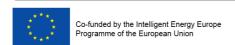
In the meanwhile the municipality has cut the budget for the project, and only parts of the plan are being carried out:

- Insulation of all basement walls to 1,87 meters below terrain, which is bottom of the foundation of the crawl space (going deeper, to the bottom of the full basement, is unproportionally more expensive due to work safety regulations)
- Insulation of half the façade and exchange of the corresponding windows (coincidentally not the ones, which caused complaints about draught)

				Specific	
				,	Additional Specific
Step No.	Year	Measures	Demand	Demand	PV Gains
	1975		276	277	
	2014	Actually implemented steps 2014	218	236	
7	2026	Insulate roof	76	137	

Figure 6: Effect of the in 2014 actually implemented steps compared to start end end state

So far the date for the continuation of the refurbishment is not planned.



3 Completion of step-by-step refurbishment

3.1 PHPP Result Sheet of the completed refurbishment (2014)

Figure 7: Specific energy efficiency values of the completed project modelled with PHPP 9 Beta

