

Practical implementations of EnerPHit step-by-step retrofit

Simon Camal La Maison Passive

19th Passive House Conference, Leipzig, 2015

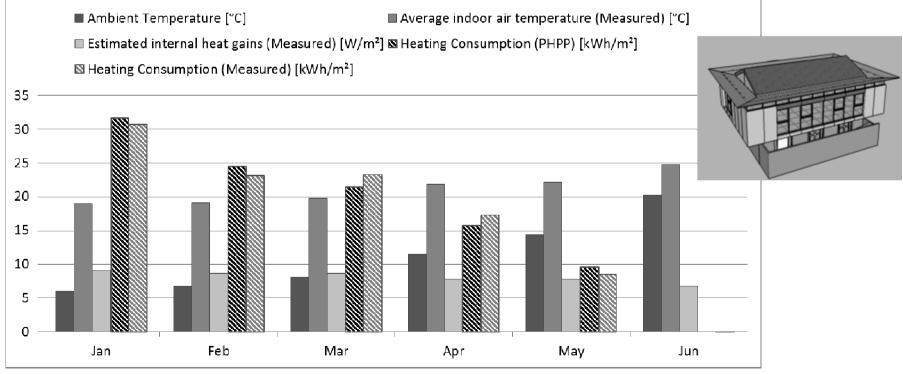
Co-funded by the Intelligent Energy Europe Programme of the European Union

Summary

- 1. Audit
- 2. Design
- **3.** Reduce costs

1. AUDIT

Co-funded by the Intelligent Energy Europe Programme of the European Union

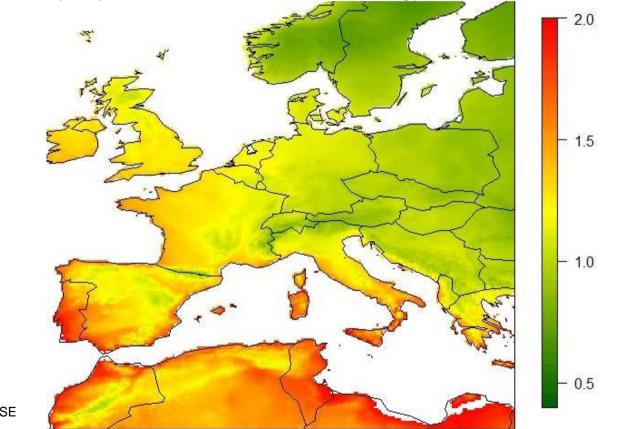


PHPP to model existing buildings ?

Recalibrated PHPP9 with monitoring data on existing office building

- Timber frame, double glazing, extract only, n50 = 6,8 h⁻¹
- Heat supply : 60% pellets, 40% gas
- PHPP heating consumption matches monitored levels (150 kWh/m².a, ± 10% monthly)

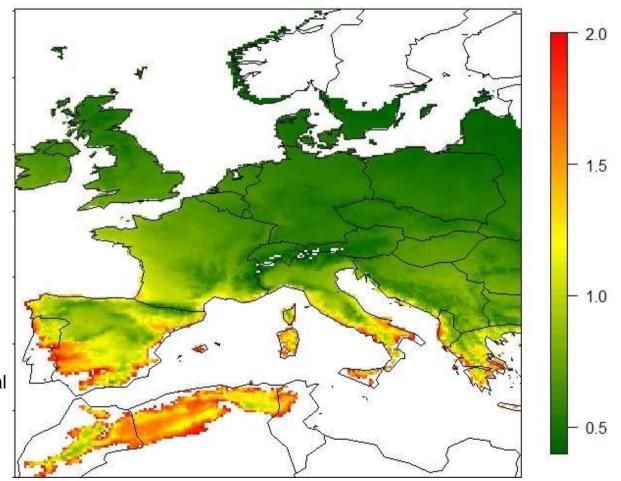
Observer Project Archipente, Rhone Alpes, FR. Data : 01/14-06/14


Co-funded by the Intelligent Energy Europe Programme of the European Union

Passive House quality even with hotter winters ?

Minimal Uw [W/(m².K)] for winter comfort, average minimal temperature in winter -> Comfort is not the only key, have a look at the winter energy balance !

© La Maison Passive Climate Data: CRU, NASA SSE


Co-funded by the Intelligent Energy Europe Programme of the European Union

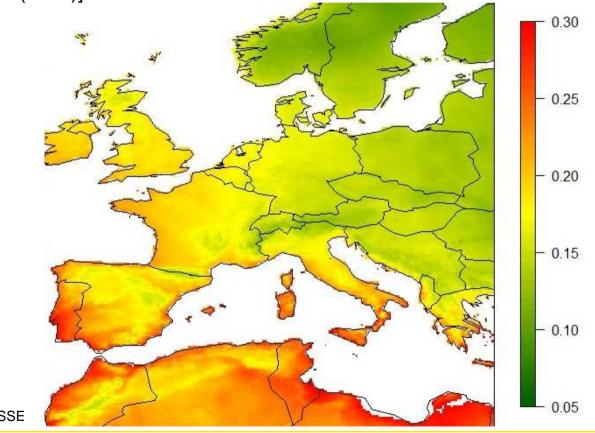
Winter energy efficiency : windows

Minimal Uw [W/(m².K)] for positive energy balance on windows

g = 55% 22% of the solar horizontal irradiation reach windows

© La Maison Passive Climate Data: CRU, NASA SSE

Co-funded by the Intelligent Energy Europe Programme of the European Union


Efficiency for comfort : walls

Passive House quality even with hotter winters ?

Yes ! But comfort must be completed by an economical assessment

Minimal U-value [W/(m².K)] in walls for winter comfort

Climate Data: CRU, NASA SSE

© La Maison Passive

Co-funded by the Intelligent Energy Europe Programme of the European Union

Economical efficiency : components

Is it worth to retrofit a wall already insulated?

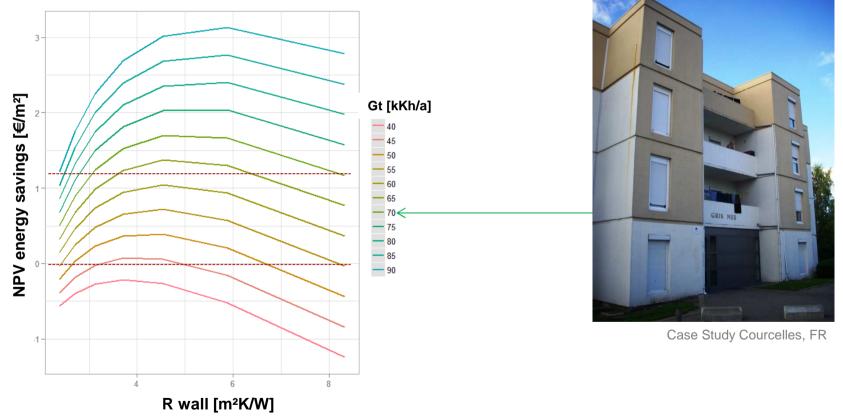
- d'évacuati Encadrement de baie: tole 15/10 Zn 20 u Maslic, Sur Mousse
- Example : Prefab concrete panels 1978
- 8 cm mineral wool insulation
- U = 0,47 W/(m².K)

Example : Concrete form wall 1973

- 10 cm interior insulation with mineral wool
- U = 0,35 W/(m².K)

EuroPHit

Co-funded by the Intelligent Energy Europe Programme of the European Union

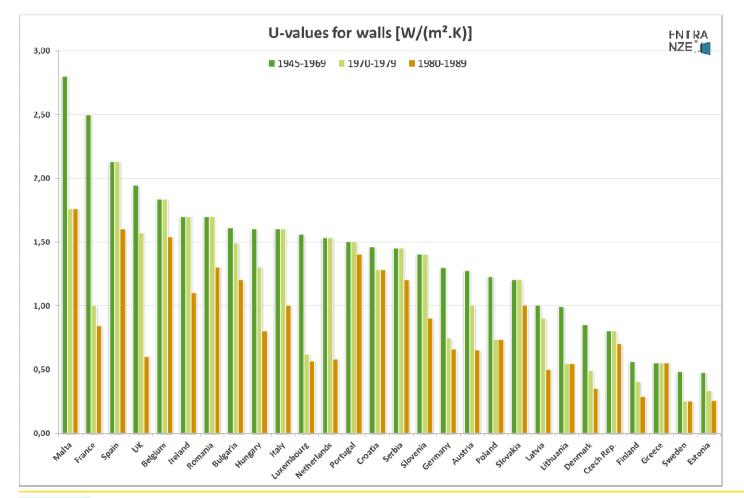


Is it worth to retrofit a wall already insulated?

Example ETICS on prefab concrete panels 1978 (thousands of buildings)

- Existing: 8 cm mineral wool insulation, U = 0,47 W/(m².K)
- Investment ETICS: 90-150 €/m² wall according U-value, Render : 35€/m²

• Direct electric heaters, 15 c€/kWh, investment period 20 years, residual value on extra 30 years



Co-funded by the Intelligent Energy Europe Programme of the European Union

Compare your building to the average figures of your country

Co-funded by the Intelligent Energy Europe Programme of the European Union

Observer Project Archipente, Montbrison, FR

www.europhit.eu

Initial airtightness

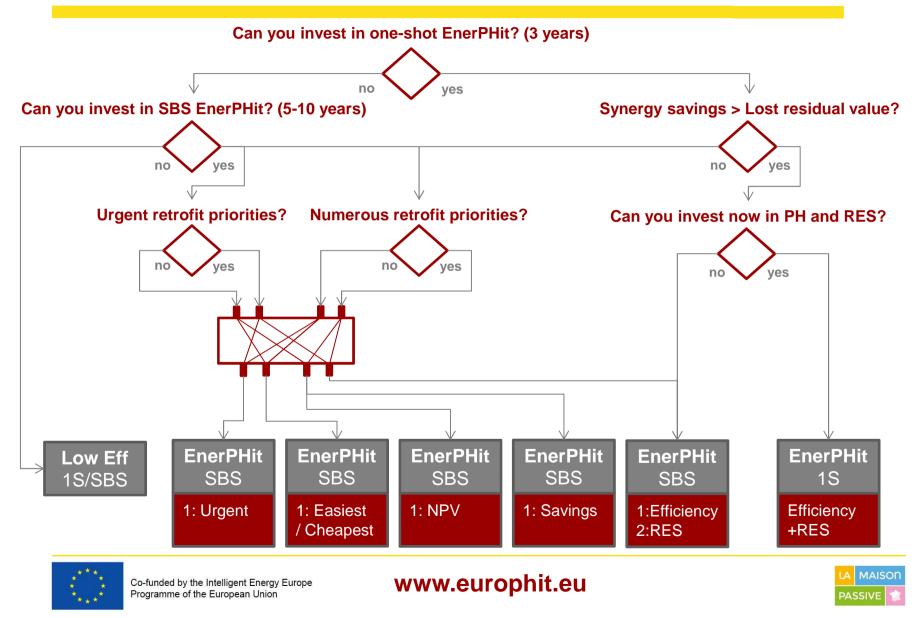
Is the initial airtightness relevant to the economic analysis ?

- Office in timber frame to be retrofitted
- Mechanical ventilation extract only
- Initial airtightness test : n50 = 6,8 h⁻¹

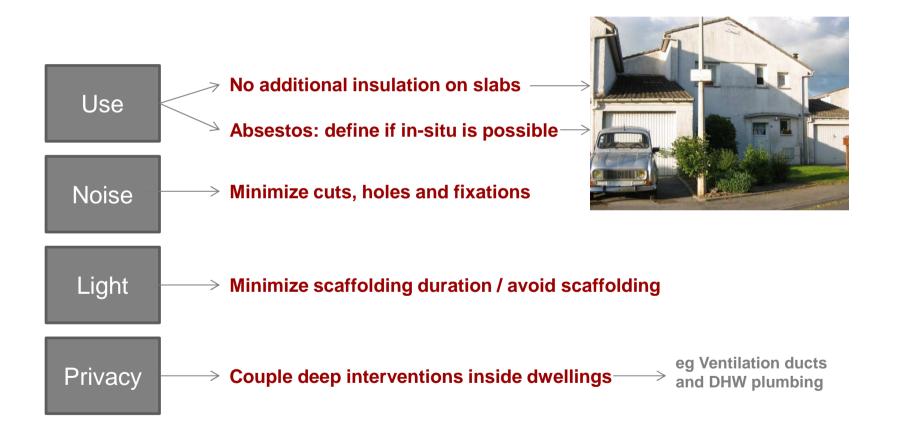
Was it worth to do an initial blower-door test ?

- Yes, as a guidance for the airtightness design
- Yes, as it helped calibrating the PHPP
- Instead of a pessimistic $n50 = 10 h^{-1}$,
- 17 kWh/(m².a) heating demand (PHPP)
- + 18 €/m² net present value (test cost: 2 €/m²)

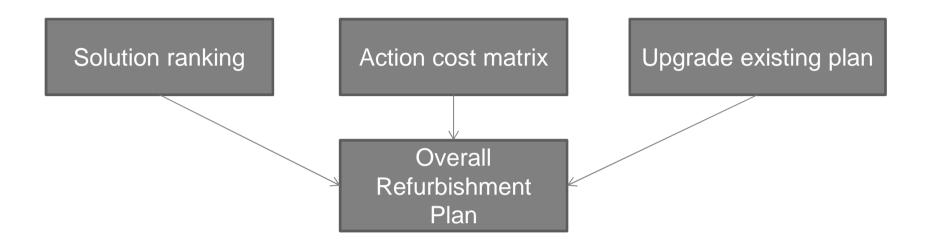
2. DESIGN



Co-funded by the Intelligent Energy Europe Programme of the European Union


Decision Graph

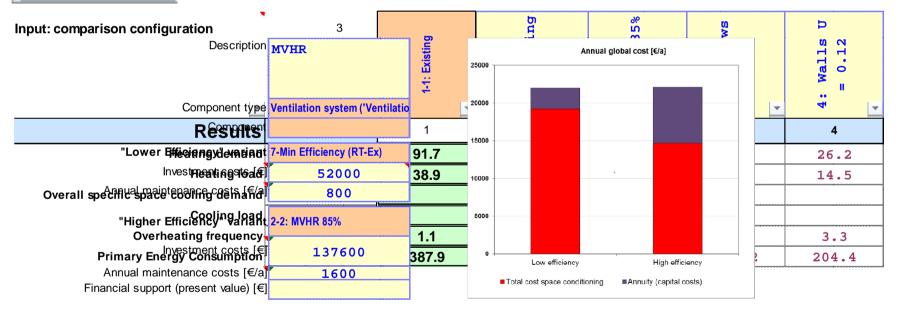
Keep tenants inside



Setting up an Overall Refurbishment Plan

Example on Case Study Courcelles, France

- Multifamily social housing
- 2 x 16 dwellings
- Prefab concrete panels
- Heating and DHW individual, direct electric
- Existing heating demand = 90 kWh/(m².a)
- Existing PE demand = 390 kWh/(m².a)


Solution ranking

- 1. Define solutions with owner/investor
- 2. Rank these solutions (use PHPP9 Variants)

Comparison

Centralised MVHR vs standard maintenance on existing extract unit (16 dwellings)

Present Value Energy savings (20a) = 57 €/m²TFA

Solution ranking

Euro**PHit**

- 1. Define solutions with owner/investor
- 2. Rank these solutions (use PHPP9 Variants)
- **3.** Identify best candidates for first step
- 4. Check for incompatibilities

Result in this case: **First step =** Ventilation

Most Urgent	Easiest/Cheapest	Best NPV	Highest Savings
Windows	Windows	Roofs	Ventilation
Heating&DHW	Walls	Walls	Windows
Walls	Heating&DHW	Ventilation	Walls
Ventilation	Roofs	Heating&DHW	Heating&DHW
Roofs	Ventilation	Windows	Roofs
Slabs	Slabs	Slabs	Slabs

Co-funded by the Intelligent Energy Europe Programme of the European Union

Action cost matrix

Which retrofit path?

Lines: Before Columns: After	Windows	Walls	Ventilation	Heating	Total induced costs
Windows					
Walls					
Ventilation					
Heating					
Total incurred costs					

[€/dwelling], 20 year period Cost calcuation: Investment (Synergies) + Lost Residual Values – Energy savings

Action cost matrix: Example Courcelles

Euro**PHit**

Windows

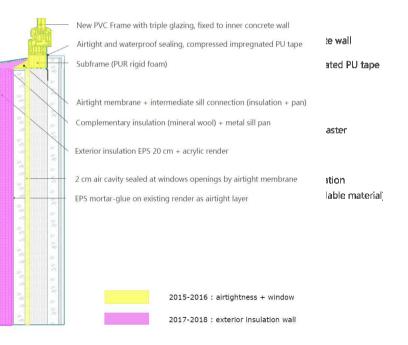
- New triple glazing PVC window installed in the inner insulation layer
- Investment = 8.8 k€/dwelling
- Energy savings (PHPP9) = 5.5 k€/dwelling

Walls

- Airtightness: exterior concrete panel + sealing
- 200mm EPS glued on exterior panel, sealed air layer
- Investment = 6.3 k€/dwelling
- Energy savings = 4.7 k€/dwelling

Windows before Walls

- Intermediate then final connection to walls
- Investment = 0.9 k€/dwelling
- Energy savings = 0.1 k€/dwelling


Walls before Windows

- Intermediate then final connection to windows
- Investment = 2 k€/dwelling
- Energy savings = 0.1 k€/dwelling

www.europhit.eu

MAISO

PASSIV

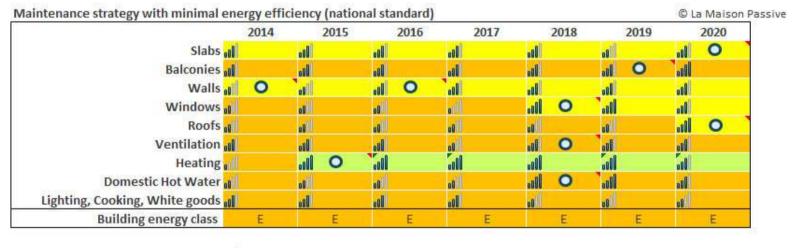
Action cost matrix

Lines: Before Columns: After	Windows	Walls	Ventilation	Heating	Total induced costs
Windows	8800-5500= 3300	900-100= 800	2000- 0 = 2000	0	6100
Walls	2000-100= 1900	6300-4700= 1600	0	0	3500
Ventilation	0	0	9300-4300= 5000	0	5000
Heating	Heating oversized = 3000	Heating oversized = 3000	Heating oversized = 3000	10300-8000= 2300	11300
Total incurred costs	8200	5400	10000	2300	

[€/dwelling], 20 year period Cost calcuation: Investment (Synergies) + Lost Residual Values – Energy savings

Upgrade refurbishment plan

- 1. Build up a low-efficiency retrofit scenario (either national standard or low energy label)
- **2.** Modify it to embed EnerPHit efficiency
- **3.** Chose measures according to priorities defined with investors:
 - Occupants comfort
 - Building health
 - Positive Net Present Value of single measures or group of measures
 - Technical feasibility



Setting up an overall refurbishment plan : Example

Base scenario, minimal energy efficiency as required by national standard

- Investment required (6 year period) : 22 k€/dwelling
- Global cost on 20 years : 34 k€/dwelling
- Total energy bill (with white goods) : 1650 €/dwelling.a
- Scheduled measures : window replacement, new paint on walls, change electric heaters, replace sanitary facilities

Colors indicate energy class of components

Bad condition:

Good state: New:

Used but functional:

Works scheduled: O

Setting up an overall refurbishment plan : Example

Euro**PHit**

EnerPHit scenario

- Investment required (6 year period) : 41 k€/dwelling
- Additional investment for EnerPHit : 19 k€/dwelling
- Global cost on 20 years : 48 k€/dwelling
- Total energy bill (with white goods) : 400 €/dwelling.a
- Scheduled measures : phB windows, MVHR, ETICS, Insulation roof, Air/Water heat pump for heating/DHW

	2014		2015		2016		2017		2018	2019	2020
Slabs 📶								000		000	000
Balconies 📶							•	ail.		and I	all l
Walls all			0			diff	0	dill		add	and l
Windows 🔐		100	0			and .	•	line.		anil	and l
Roofs at		a0 1		0		01		all		all.	- All
Ventilation 📶		lin,		in l		in the		ail.		and a	all .
Heating 📶		aill		oill		oill		att.		all	line
Domestic Hot Water 📶		o Dil		00		000		ail.	•	auli	all.
ighting, Cooking, White goods 📶		000		000		000		aith.	10	all	- all
Building energy class	E		D		D	and the second	С		A	A	A

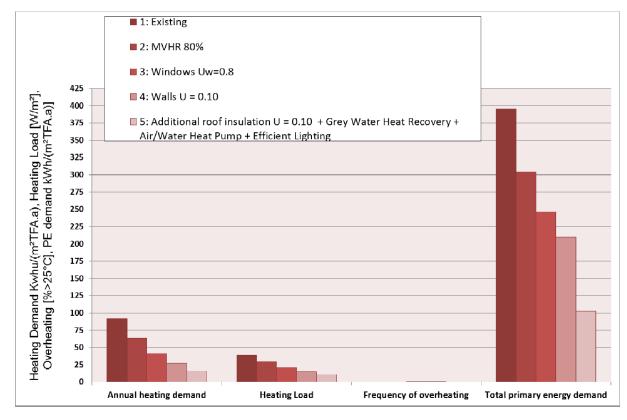
Colors indicate energy class of components

Works scheduled: O

Bad condition:

Good state:

Used but functional:

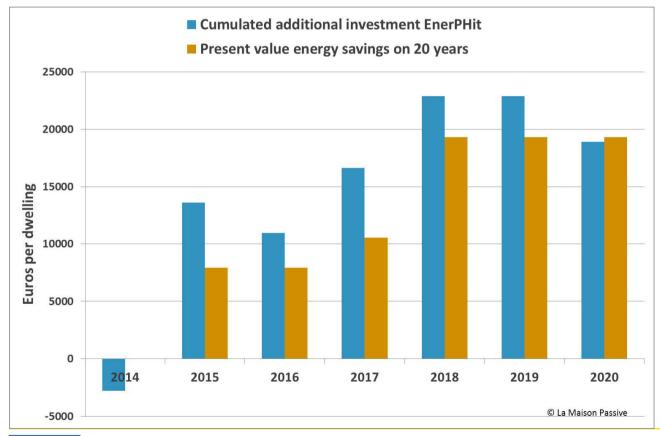


Setting up an overall refurbishment plan : Example

Euro**PHit**

PHPP9 Variants

- 85% reduction in heating demand
- 75% reduction of Primary Energy consumption

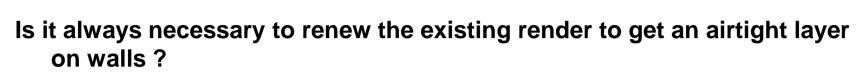

Co-funded by the Intelligent Energy Europe Programme of the European Union

Setting up an overall refurbishment plan : Example

Euro**PHit**

- Calculation made with PHPP9, Variants and Comparison Sheet
- Additional EnerPHit investment balanced by energy savings on a 20 year period
- ! Energy savings can't always be fully recovered by investors (here roughly 50%)

Co-funded by the Intelligent Energy Europe Programme of the European Union


3. REDUCE COSTS

Co-funded by the Intelligent Energy Europe Programme of the European Union

Airtightness

- Airtightness test after replacement of windows and doors, airtight membrane on roof : n50 = 0.7 h-1
- Why ? Relatively airtight concrete form wall with cement render
- Not the case with masonry !

Do we save money here ?

- Avoid scraping and refill of existing render: 30 €/m²
- Need to test bonding strength: + 5 €/m²
- Avoid dowels: ± 40 €/m²

EuroPHit

Observer Project Sauvage, Lyon, FR

Co-funded by the Intelligent Energy Europe Programme of the European Union

Total annual cost

Step: ETICS + Garage slabs & roofs

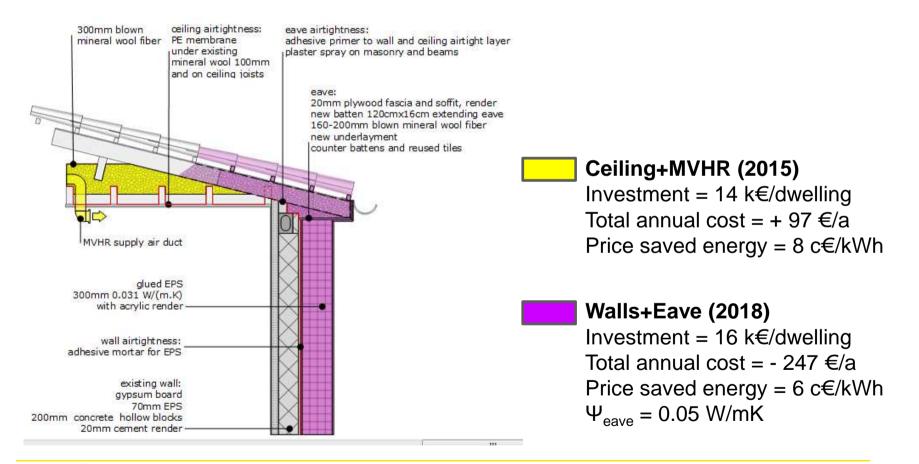
-100 kWh/(m².a) heating demand Investment EnerPHit = 190 €/m²TFA Investment Minimal = 34 €/m²TFA Energy savings = 177 €/m²TFA

Gain on total annual cost for heating (gas) after step: -266 €/dwelling.a

	Economic viability								
Total annual costs	11.31	2889	10.27	2623	1.04	266	€/a		
	Maxin	nal economically	viable additional i	176.84	45172	€			
		C	Cost per kWh of s	6	.0	Cent/kWh			

Case Study Auby, FR

Co-funded by the Intelligent Energy Europe Programme of the European Union



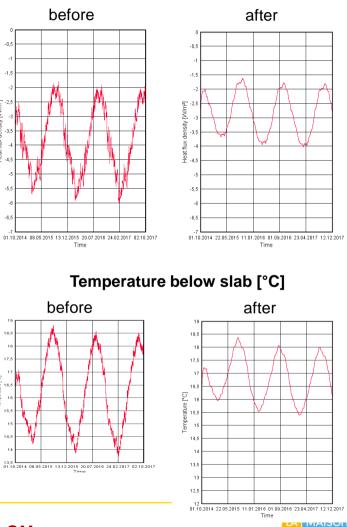
Find reproductible solutions

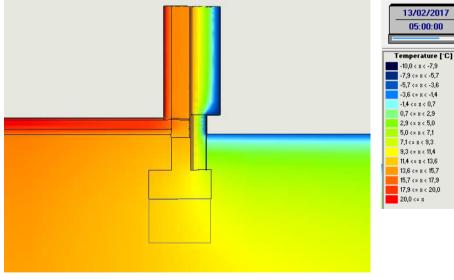
Euro**PHit**

Ceiling + MVHR before Wall

Case Study_06_Auby_France Eave Detail

Co-funded by the Intelligent Energy Europe Programme of the European Union


Perimeter insulation



PASSIVE

160x600 mm vertical perimeter insulation xps Small houses B'= 5 m Still 15°C below slab at end of winter Heating demand reduced by 1 kWh/(m².a) Depth more relevant than width

Average heat flow through slab [W/m²]

Co-funded by the Intelligent Energy Europe Programme of the European Union

Perimeter insulation

Euro**PHit**

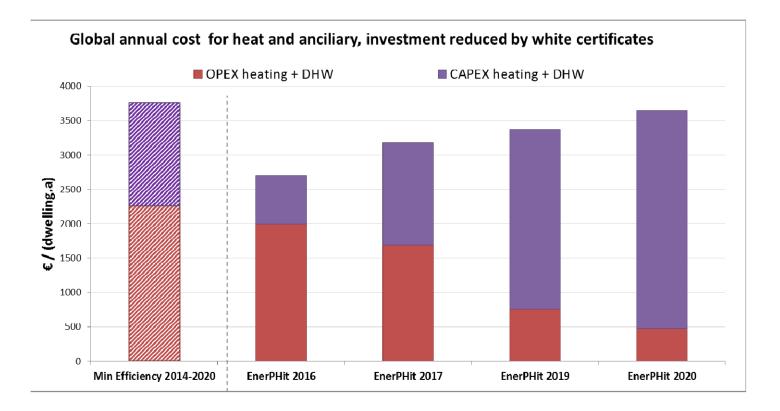
Is it worth?

Heating demand reduction = -1 kWh/(m².a) Needed here to reach EnerPHit Investment ~ 40 €/m²TFA

Negative Net Present Value, but... Cheaper than insulate slabs from the inside!

Observer Project Sauvage, Lyon, FR

Wufi 2d


Co-funded by the Intelligent Energy Europe Programme of the European Union

Total annual cost

Here EnerPHit can be reached without additional total cost

White certificates : - 3% to -10% investment in opaque components Assessment on 20 years + Residual values on extra 10 years

Co-funded by the Intelligent Energy Europe Programme of the European Union

Couple interventions when ripe

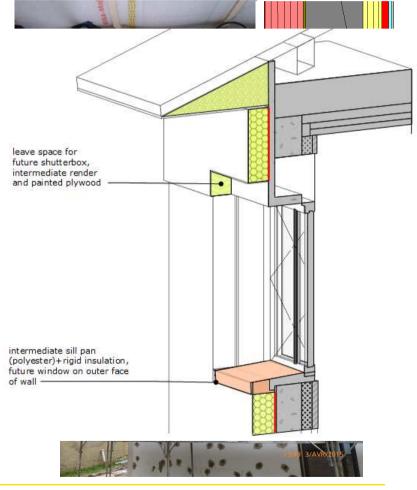
Windows+Walls vs Walls before Windows

Windows+Walls:

Take out window+shutter

= 190 €/window

Lost residual value

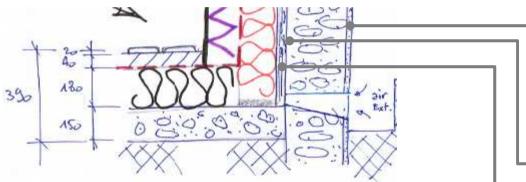

~ 100 €/window

Install new window+shutter

= 1250 €/window

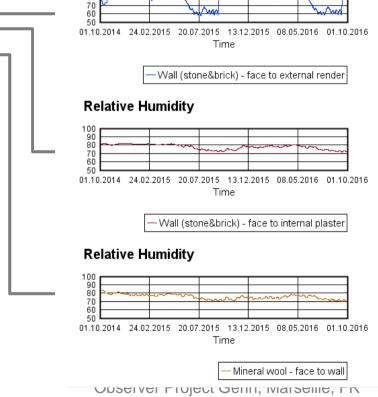
Walls before Windows:

Invest = 300 €/window



Co-funded by the Intelligent Energy Europe Programme of the European Union

Interior insulation of massive walls



- PU 40mm+Intello+Mineral wool 180mm
- Ventilated air cavity 27mm?

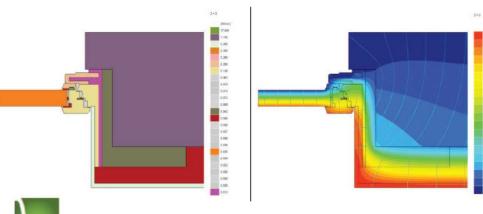
Without, spare on space and labour cost

- Careful airtightness
- Sensible to diffusive and capillary properties of wall

Relative Humidity

100 90 80

www.europhit.eu


EuroPHit

Innovative window installation

Prefabricated window installation with aerogel and cork

- Thought for interior insulation of listed buildings, step-by-step possible
- 745 €/m² (excl. VAT) installed
- Ψ_{installed,lateral}=0.06 W/(m.K)
- Ψ_{installed,bottom}=0.03 W/(m.K)

Tillieux Menuiseries, Reawin A+ Tip Tep

EuroPHit

Co-funded by the Intelligent Energy Europe Programme of the European Union

Cascade ventilation

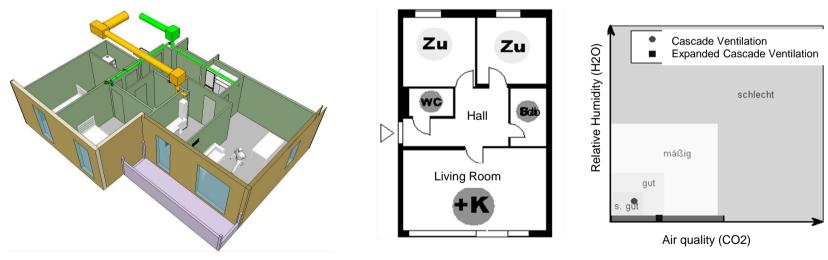
- Supply air in bedrooms (20 m3/h each), living room (60 m3/h)
- Transfer vent from living room to kitchen
- Cellar: 10 m3/h supply air to minimize duct length
- Extract (existing) in kitchen, bathroom and WC, total 120 m3/h / 0,5 h-1

Reuse existing extract ducts

Total investment: 8.6 k€/dwelling

Expanded cascade ventilation?

- Can we delete the air inlet in the living room?
- Can we blow fresh air from the corridor?

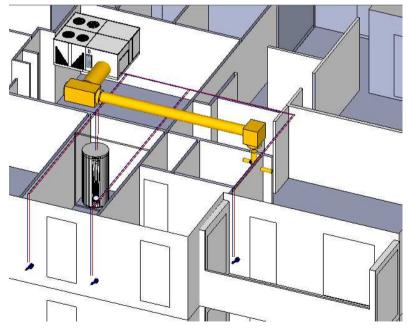


Cascade ventilation

Expanded cascade ventilation

- Air quality would be too low here if no supply air in living room
- Works better if bedrooms have direct link to living room

Tool: Univeristät Innsbruck


Co-funded by the Intelligent Energy Europe Programme of the European Union

Air/Water Heat Pump on extract air

A suitable solution for EnerPHit ?

- Outdoor unit 20 kW, Hydraulic modules with 150 L storage in cellars
- Outdoor air pre-heating via air/water heat exchanger and variable flow from damper and small fan CO2-regulated
- Heating demand 20 kWh/(m².a)
- Primary energy demand 115 kWh/(m².a)

Co-funded by the Intelligent Energy Europe Programme of the European Union

EuroPHit

Conclusion

Overall Refurbishment Plan

- Upgrade existing plan with EnerPHit quality is possible: budget shifts towards envelope
- Identify intermediate states

Prove cost-efficiency

- PHPP9 Variants and Comparison Worksheets
- Capital cost up to 90% of total cost for EnerPHit

Reduce costs

- Reproductible solutions
- Cascade ventilation
- New products which make EnerPHit easier
- Financial support for design, quality insurance and product development

Euro**PHit**

Thank you for your attention

www.europhit.eu

The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained therein.

Partners:

